
Rock ‘n Rolling Robots (2-lesson plan)
A BEAM Lesson Plan

Written by Matthew Wang

Introduction

As technology has advanced, robots have become more and more commonplace in the world
around us; robots have become an avoidable part of 21st century life. Many robots are
autonomous: working without live human input or with just human supervision (a human is
“out of the loop”). Autonomous robots are often used in manufacturing, operations/logistics,
child and elderly care, and in a wide-variety of other commercial and industrial applications. In
addition, autonomous robots are closely linked with self-driving cars, machine learning, and
artificial intelligence.

Abstract

The goal of this lesson is to teach students about the types of components that go into robots,
to introduce them to basic programming concepts via block-based programming, and to tie
these two skills together to create and program a working robot. Throughout this activity, they
will also practice critical thinking skills, teamwork, and familiarize themselves with assembling
basic products.

Materials
Students
For every group of students, they will need the following:

• 1 mBot Robot ($100 USD MSRP, organizational discounts exist)
o Robot Frame
o Microcontroller Shell
o 2 Motors
o Line Sensor
o Ultrasonic Sensor
o 2 Gear Wheels
o Front Wheel
o Battery holder
o USB-A to USB-B cable
o Assorted screws
o Assorted wiring

• 1 laptop or desktop computer
• 1 copy of mBlock IDE (free at http://www.mblock.cc/mblock-software/)
• 4 AA Batteries (~ $3 USD)

We recommend that groups range between 2-4 students – however, the group numbers will
differ based on the number of materials available.

We recommend that the instructors attach the Velcro strips to the battery holder and the robot
beforehand.

Teachers
In theory, nothing is needed to teach this lesson. However, we recommend that the teachers
have a projector connected to a computer, where they can project the instruction manual and
go through the interface of the mBlock IDE.

Lesson Plan

As a note, this lesson plan can run for at least an hour and a half, to however long instructors
wish to give students time to program. Traditionally, we’ve run this lesson in two parts on two
days: the first lesson is just robot assembly, while the second focuses on programming.

Lesson 1: Assembling the Robots

Each robot kit comes with an instruction manual that explains the assembly steps. It’s up to the
instructors if they feel comfortable with the kids following the instructions or would prefer to
walk it through step-by-step in front all of the students. Here are the steps:

1. Setup
a. Ensure that each kit has everything listed in the materials section – it’s possible

that some materials have been lost in between lessons.
b. Explain how the screwdriver in the kit works – some screws are Philips (plus)

heads, while some are hex (hexagonal) heads.
2. First, attach the motors to the robot frame, using two long Philips screws per motor.

a. At this point, ask them to thread the motor wires through the hole at the front of
the robot.

b. If time allows, discuss how electric motors work – have they seen any other
electric motors (e.g. electric pencil sharpeners, household appliances, Teslas)?
Why are they shaped that way? Why are they on the inside of the car, opposed
to the outside?

3. Then, screw each of the rubber gear wheels to the motors, using one small Philips screw
per motor.

4. Then, screw in the line sensor and the front wheel into the front of the robot, using two
hex screws.

a. Note that the line sensor’s port (similar to an ethernet port) needs to be inside
the robot – if not, it will drag when the robot runs.

b. Have the students plug in one wire to the line sensor, and thread the other wire
the hole at the front of the robot.

c. If time allows, discuss how the line sensor works – what technology do they
think it uses? Why are there things that look like light bulbs on the line sensor?
Have they seen this kind of technology elsewhere?

5. Then, screw in the ultrasonic sensor into the robot, with two hex screws – it should look
like eyes are being attached to the “face” of the robot.

a. Have the students plug in one wire to the ultrasonic sensor, and thread the other
wire the hole at the front of the robot.

b. If time allows, discuss how the ultrasonic sensor works – what do “ultra” and
“sonic” mean? Have they encountered ultrasonic sensors in equipment (e.g.
some automatic doors, ultrasound)? Are there any analogs in nature (e.g. bats,
dolphins)?

6. Then, screw in the four standoffs to the top of the robot – no need to use a screwdriver.
7. Then, attach the battery holder to the top of the robot, aligned with the Velcro strip.

a. If time allows, discuss how robots are powered. Is it always batteries? Why do
we use different kinds of batteries?

8. Then, screw in the robot controller to the top of the standoffs, with four hex screws.
a. If time allows, discuss what the robot microcontroller is. What is it made of?

Why is there a cover on top of it? What else have they seen microcontroller-like
items (e.g. a computer, small electric toys)? Is there a biological analogy to a
microcontroller?

9. Finally, attach the rest of the wires to the microcontroller:
a. Plug in the right motor to M1.
b. Plug in the left motor to M2.
c. Plug in the line sensor to port 2.
d. Plug in the ultrasonic sensor to port 3.

Lesson 2: Introducing the Programming

1. Setup
a. Ensure each student has mBlock IDE installed on their computer
b. Ensure each student is able to plug in the robot to their computer, via the USB

cable.
c. Have the students create a “mBot” device profile (there should be a + sign) –

they must use this device profile to code for the mBots.

d. Have the students tick the “Upload mode” box – this will let them write code for

their robots.

2. Introduce the mBot interface, with these annotated sections:

a. Discuss the sequential order of programming – similar to a to-do list. In general,
computers can only follow orders one at a time (simplification).

3. Discuss the overall concept of sequential programming – that is, telling the robot to do
certain steps in order. In Scratch/mBlock instructions are rectangular blocks that can
chain to each other via small tabs on each block. Each block is executed after its
previous block is done.

4. Introduce the “Events” tab, which starts a block of code if an event happens – either
when the robot turns on, or when a button on the board is pressed etc.

a. Drag the “when mBot(mcore) starts up” block into the code section. Note the

tab at the bottom of the block: the rest of the code that students want to
execute should go under this block.

5. Introduce the “Action” tab, which controls the movement of the robots. Chain a few
movement controls together and ask the students what they think the robot would do
(and where it would end up relative to its starting position).

a. A good exercise to run through is test their understanding of sequential code –
what would be the difference between the following two blocks?

6. Introduce the “Operators” tab – this lets students perform simple mathematical

operations, and most importantly, evaluate expressions.
a. Objects that are circular evaluate to numbers (or words). Students can type into

white boxes, use existing operators to get new values, or get input values from
sensors.

b. Objects that are hexagonal take in inputs and evaluate to either true or false (in
programming, these are Boolean expressions). The most basic operators are
greater than, less than, and equal to – they all take in circular inputs (i.e.
numbers).

i. If time permits, introduce the more complex Boolean operators, AND,

OR, and NOT. They each take in another expression and evaluate them
against each other.

7. Briefly introduce the “Sensing” tab, which contains several circular and hexagonal inputs

that students can use to get information from sensors. Likely, the only important sensor
to introduce is the ultrasonic sensor, which returns a numerical value based on distance.
Note the importance of what port the sensor is connected to!

8. Introduce the “Control” tab, which is a simplified version of basic control flow paradigms

in computer science. Run through a few key concepts (if, if/else, loops) with both real-
life examples and code blocks. This is often the trickiest part of the lesson – spend extra
time to ensure the kids understand these concepts.

a. The “forever” control block is like a “while true” loop in programming, a
common control flow used for event loops and real-time controls. Students can
place other blocks inside the forever construct – they will execute sequentially
and then jump back to the top, forever.

i. Ask students if they can come up with examples of when a forever loop

would be used in real life.
ii. Metaphorical examples of forever loops can include many human bodily

functions (e.g. breathing, digestion), or electronics that are always on and
listening for input

iii. Good (simplified) examples of forever loops in control systems include
video games (checking if a button is pressed, rendering frames, etc.),
robots (checking sensors for inputs while they’re always on), and phones
(checking if they’ve received a notification, cell signal).

iv. If time permits, introduce the “repeat” and “repeat until” blocks, which
combine the concept of the forever loop and if statements.

b. The “if then” and “if then else” blocks function like if statements in
programming, a very important concept to allow for conditional code (i.e. doing
different things based on inputs). Everything inside the block construct will only
execute if the condition (the expression in the hexagon) is true.

i. Ask students if they can come up with any examples of an if or if-else

statement in real life.
ii. Common examples include “if it’s raining, bring an umbrella outside”, “if

I’m hungry, eat food”, “if there’s something in front of me, go around it”,
etc.

iii. If statements are often used in control systems to process outside input;
examples include distance sensors (automatic doors, moving robots),
light sensors (automatic lights, barcode scanners), sound sensors
(clapping lights, smart assistants), and human inputs (computers, phones,
buttons).

9. Quickly introduce the “Show” tab – students can use it to change the colour of lights on
their robot, or to play a sound.

10. Finally, quickly mention how students will upload their code to their robot:
a. Ensure the robot is physically connected to the computer via USB
b. After toggling the robot onto upload mode, hit the “Connect” button
c. When the students are ready, hit “Upload”. Ensure that the robot’s wheels are

not touching the ground.
11. Now, the students have all the knowledge they need to start programming their robot.

Present to them a goal for their robot to aim for, and have groups work on
programming their robot to meet that task. Teachers should split up and help groups
who are struggling.

12. Examples of possible activities:
a. Robot Dancing (easy): using a combination of moving the robot, turning lights

on/off, and playing sounds, have students create a dance routine for their robot.
Tests understanding of sequential programming and robot movement.

b. No-Bump Robot (medium): using information from the ultrasonic sensor, make
the robot move around the room without ever bumping into a wall. Tests
understanding of sequential programming, robot movement, using sensors, and
control flow.

i. Example code:

